Comparison of feature combination strategies for saliency-based visual attention systems
نویسندگان
چکیده
Bottom-up or saliency-based visual attention allows primates to detect non-speciic conspicuous targets in cluttered scenes. A classical metaphor, derived from electrophysiological and psychophysical studies, describes attention as a rapidly shiftable \spotlight". The model described here reproduces the attentional scanpaths of this spotlight: Simple multi-scale \feature maps" detect local spatial discontinuities in intensity, color, orientation or optical ow, and are combined into a unique \master" or \saliency" map. The saliency map is sequentially scanned, in order of decreasing saliency, by the focus of attention. We study the problem of combining feature maps, from diierent visual modalities and with unrelated dynamic ranges (such as color and motion), into a unique saliency map. Four combination strategies are compared using three databases of natural color images: (1) Simple normalized summation, (2) linear combination with learned weights, (3) global non-linear normalization followed by summation, and (4) local non-linear competition between salient locations. Performance was measured as the number of false detections before the most salient target was found. Strategy (1) always yielded poorest performance and (2) best performance, with a 3 to 8-fold improvement in time to nd a salient target. However, (2) yielded specialized systems with poor generalization. Interestingly, strategy (4) and its simpliied, computationally eecient approximation (3) yielded signiicantly better performance than (1), with up to 4-fold improvement, while preserving generality.
منابع مشابه
Graph-based Visual Saliency Model using Background Color
Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...
متن کاملFeature combination strategies for saliency-based visual attention systems
Bottom-up or saliency-based visual attention allows primates to detect nonspecific conspicuous targets in cluttered scenes. A classical metaphor, derived from electrophysiological and psychophysical studies, describes attention as a rapidly shiftable ‘‘spotlight.’’ We use a model that reproduces the attentional scan paths of this spotlight. Simple multi-scale ‘‘feature maps’’ detect local spati...
متن کاملA Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image
Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...
متن کاملJust Noticeable Difference Estimation Using Visual Saliency in Images
Due to some physiological and physical limitations in the brain and the eye, the human visual system (HVS) is unable to perceive some changes in the visual signal whose range is lower than a certain threshold so-called just-noticeable distortion (JND) threshold. Visual attention (VA) provides a mechanism for selection of particular aspects of a visual scene so as to reduce the computational loa...
متن کاملCompressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999